
Before we get started….

nlpfromscratch.com
/TMLS

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/
http://nlpfromscratch.com/TMLS
http://nlpfromscratch.com/TMLS

Getting Started with Generative Text &
Fine-tuning LLMS in Hugging Face

Myles Harrison
AI Consultant & Trainer

8th Annual Toronto Machine Learning Summit

Thursday, July 11th, 2024

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/
https://www.linkedin.com/in/mylesharrison/
https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Agenda

Conclusion

Introduction

Generative Text Models

Fine-tuning LLMs

01

02

03

04

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Disclaimer

The materials presented herein are the author's own and do not
necessarily reflect the views of Hugging Face, nor any other
organization or individual.

The author is solely responsible for the accuracy and completeness
of the information presented, and any errors or omissions are
unintentional.

This presentation is not endorsed, affiliated with, nor sponsored
by Hugging Face, and the author has no affiliation with this
company.

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Manifesto

Teaching and
learning are
complementary.

Learning is not a
journey, it is guided
exploration.

The best way to
learn is by doing.

Learning is a
non-linear process.

Knowledge is only valuable if it is useful.

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Generative Text
Models i.e. GPT

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

What the Heck is an LLM?
A large language model (LLM) is a type of machine learning
model.

More specifically, LLMs are a kind of neural network or deep
learning model, a type of model based upon imitating the
structure of neurons in the brain.

The “large” in large language models refers to both the size
of the models - most modern LLMs being composed of
hundreds of millions, billions, or now even trillions (!) of
parameters - as well as the data they are trained upon,
which is typically very large bodies of text (trillions of
words). Large language models currently represent the
state of the art in natural language processing (NLP)
applications and the vast majority are based upon the
transformer architecture.

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Types of Transformers (not Decepticons)

Encoder Only Encoder-DecoderDecoder Only

autoencoding models

TASKS

autoregressive models seq2seq models

● Classification
● Named entity recognition
● Extractive QA
● Masked language modeling

● Text generation
(Causal language modeling)

● Translation
● Summarization
● Generative QA

Credit: Abby Morgan

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/
https://www.comet.com/site/blog/explainable-ai-for-transformers/

Language Modeling Tasks - Two Examples

The rain in [MASK] falls mainly in the plain.
The rain in Spain falls mainly in the plain.

The rain in Spain ? ? ? ? ? ?
The rain in Spain falls ? ? ? ? ?
The rain in Spain falls gracefully ? ? ?
The rain in Spain falls gracefully from ? ?
The rain in Spain falls gracefully from the ?
The rain in Spain falls gracefully from the sky.

Masked Language
Modeling (MLM)

Causal Language
Modeling (CLM)

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Foundation Models

Encoder Only Encoder-DecoderDecoder Only

GPTBERT T5

● Bi-directional stacked encoders

● Trained using masked token and

next sentence prediction

● Highly generalizable by adding

heads for different tasks

● “Foundation of foundation”

● Google Research, October 2018

● Stacked decoders

● Generative text model

● Innovation and improved

performance with RLHF

● Size follows Moore’s Law,

proprietary after GPT-2

● OpenAI, June 2018

● Encoder and decoder

● Text-To-Text Transfer Transformer

● Multiple different tasks in training

and objectives

● Text as input, text as output

● Google Research, June 2020

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Use Cases for Generative Text
Code autocompletion and AI-assisted coding: Microsoft’s Github Copilot was launched in
June 2022. Initially, more that ¼ of developers’ code files on average were generated by
GitHub Copilot, and today with widespread adoption this is close to nearly half (~46%) and
has been used by over 1M developers. In October 2023, Copilot surpassed $100M in
annually recurring revenue.

Writing Assistants for creativity and copywriting: AI writing assistants have arisen for
improved productivity and content creation for marketing, sales, creative, and numerous
other areas. For example, Google has made this a part of their core offerings with their
announcement of Duet AI and Canva has introduced MagicWrite based upon OpenAI’s
offerings.

Entertainment and Social: Training generative language models on specific datasets has
allowed to give them “personality”. Character.ai was created by developers who previously
worked on Google’s LaMDA model, offers chatbots based upon fictional characters and
famous individuals. It is #2 on Anderssen- Horowitz’s list of top 50 most popular GenAI web
products (Sept 2023).

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/
https://github.com/features/copilot
https://twitter.com/swyx/status/1711792178031460618
https://workspace.google.com/solutions/ai/
https://www.canva.com/magic-write/
http://character.ai
https://a16z.com/how-are-consumers-using-generative-ai/
https://a16z.com/how-are-consumers-using-generative-ai/

GPT - The Household name of LLMs

175B parameters

GPT-1

GPT-2

GPT-3

GPT-4

1.5B parameters

115M parameters

1.7T parameters?

Toronto Book Corpus
~800M words

WebText (8M docs, 40GB)

CommonCrawl, Books 1+2,
WebText, Wikipedia (~45 TB?)

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Generating Text with a Model
When generating text, the model assigns probabilities to all possible tokens based on its
understanding of the entire context. It then selects the next token in the output based on
these probabilities.

There are different parameters we can specify when generating text from a model to vary the
outputs thereof.

The rain in
Spain falls

mainly in the…

INPUT MODEL OUTPUT

plain

meadow

fields

mountains

PROBABILITIES

plain.

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Hugging Face
Hugging Face is a software company founded in 2013 and based in New
York city. As of August 2023, the company is in Series ‘D’ funding with a
valuation of $4.5B and backing from companies such as Salesforce,
Google, Amazon, IBM, Nvidia, AMD, and Intel.

While this name refers to the company, it also refers to the software and
platform they develop for working with large language models and data in
the natural language processing and other domains.

The datasets library allows working with data hosted on the platform,
and the transformers library for working with models of this type.
There are also other libraries for working with specialized types of models
(e.g. diffusers for diffusion models) and data processing and model
optimization.

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/
https://huggingface.co/
https://huggingface.co/docs/datasets/index
https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/diffusers/index

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Creating a Hugging Face account

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Generating Text in Hugging Face 🤗

The rain in
Spain falls

mainly in the…

INPUT MODEL

TOKENIZER

[1, 15, 22, 104, …]
[1, 0, 1, 1, 1, …]

TOKEN IDS &
ATTENTION MASK

[22, 105, 52, …]

OUTPUT TOKEN IDS TOKENIZER

plain of the
Canary

Islands, but

OUTPUT

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Greedy Search vs. Beam Search
● Greedy search, is the simplest decoding strategy, and chooses the token

with the highest probability at each step. However, this may not always

lead to the most coherent outputs since it prioritizes the most probable

token at each step without considering the overall context.

● Beam search, on the other hand, keeps track of a fixed number (the beam
width) of the most probable tokens at each step, and chooses the

combination of multiple tokens with the highest overall probability over

the beam width.

● In general, beam search tends to work well with tasks such as

translation or summarization, where the output length is predictable,

but less so in open-ended generation, where its results can be repetitive

or predictable

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

The rain in
Spain falls

mainly in the… plain

meadow

0.60

0.40

of

which

grasses

flowers

0.55

0.45

0.90

0.10

GREEDY SEARCH In Greedy search, the most
probable next token is always
selected at each point in the
predicted sequence.

‘Plain’ is the most probable
next token, followed by
‘which’.

Here, for a beam width of 2,
0.4 x 0.9 = 0.36 which is
greater than 0.6 x 0.55 = 0.33,
so these tokens are used.

The probability over the beam
width is greater, even though
the first token, ‘meadow’, has a
lower probability than ‘plain’.

The rain in
Spain falls

mainly in the… plain

meadow

0.60

0.40

of

which

grasses

flowers

0.55

0.45

0.90

0.10

BEAM SEARCH

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Temperature
● When generating text, the temperature refers to determines the

variability of the output generated by the model

● A higher temperature value leads to more diverse and varied

outputs, whereas a lower value results in more focused and

deterministic results

● Setting a temperature value of 0 will result in 100% deterministic

outputs (same output for a given input)

● Setting a temperature value higher will give the model too much

freedom and can result in random or nonsensical outputs (gibberish)

● Lower temperatures more appropriate when performing tasks that

have a "correct" answer (e.g. Q&A or summarization)

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

More technically speaking
● The probability distribution of next tokens for a given

input is modeled by the softmax function:

where here, T represents the temperature and can be
any number from 0 to infinity

● Therefore, as T approaches infinity, all tokens in
vocabulary become equally likely

● “Reasonable” values for temperature will therefore
vary by dataset model trained on and associated
distribution of probabilities, vocabulary size, etc.

● In practice, T is never set to zero, but some very small
number

The rain in Spain falls
mainly in the…

plain meadow fields mountains

plain meadow fields mountains

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Top-k and Top-p (Nucleus) Sampling
● Both top-k and top-p sampling are methods to

introduce variety into text outputs and make them less

deterministic for a given input

● In top-k sampling, instead of selecting from all possible

tokens, only the top k most probable tokens by rank

are considered

● In top-p, or nucleus sampling, only the most probable

tokens whose collective probability is greater than or

equal to a specified threshold, p, are considered

● For both methods, the total probability mass is

redistributed amongst the new of possible tokens

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Top-k, k = 5 Top-p, p = 0.8

The rain in Spain falls mainly in the…

token probability cumulative rank
plain 0.5 0.5 1
meadow 0.15 0.65 2
field 0.1 0.75 3
mountains 0.05 0.8 4
afternoon 0.05 0.85 5
sunshine 0.025 0.875 6
cities 0.025 0.9 7
morning 0.05 0.95 8
evening 0.025 0.975 9
farms 0.025 1 10

token probability cumulative rank
plain 0.5 0.5 1
meadow 0.15 0.65 2
field 0.1 0.75 3
mountains 0.05 0.8 4
afternoon 0.05 0.85 5
sunshine 0.025 0.875 6
cities 0.025 0.9 7
morning 0.05 0.95 8
evening 0.025 0.975 9
farms 0.025 1 10

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Finding a balance: Temperature and sampling
Low temperature, low top-p: Consider a narrow range of high-probability
tokens. This combination results in highly focused and predictable output.

High temperature, low top-p: Consider a narrow range of high-probability
tokens with near equal likelihood. The high temperature may still introduce
some randomness in the output.

Low temperature, high top-p: Consider a wider range of tokens but only
select the most probable ones, resulting in less varied output.

High temperature, high top-p: Consider a wide range of tokens with
increased likelihood of selecting any individual token. Can result in highly
varied but less coherent output.

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Fine-tuning
LLMS

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Phases of LLM Training

Pre-training Fine-tuning Reinforcement
Learning

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Pre-training
The parlance of modern language models has changed
slightly from that of traditional machine learning.

For modern LLMs, the initial phase of training of the model,
now referred to as pre-training, consists of showing the
model massive quantities of unlabelled text, and optimizing
its parameters against a specific objective, such as next
token prediction. This is the most computationally intensive
and expensive part of training modern language models, and
results in a pre-trained “base model”.

Because of the scale, cost, and complexity required,
pre-training LLMs is typically only realistic for large
organizations with considerable financial backing,
infrastructure, and technical expertise.

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Reinforcement Learning from Human Feedback

A key innovation leading to significant improvement in
quality of responses of generative text models was that
of Reinforcement Learning from Human Feedback
(RLHF).

Though human feedback being incorporated into RL was
not a new idea, OpenAI was the first to apply this at scale
in training InstructGPT — the predecessor to ChatGPT
— using Proximal Policy Optimization (PPO).

A pretrained model is tuned on a collection of
human-generated responses to prompts (1), and a
reward model is also trained, incorporating human
feedback: a ranking of a selection of responses
generated by the model (2). These are then incorporated
together into iteratively training a final policy model
through reinforcement learning (3).

1

2

3

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/
https://openai.com/research/instruction-following
https://arxiv.org/abs/1707.06347

Fine-tuning
On the other hand, fine-tuning is less computationally
intensive and requires much less data.

In this part of the training process, a pre-trained model is
shown a smaller dataset and further optimized against
another target objective. This objective can be the same as
that of the original base model, or a different objective if a
different type of “head” is added to the base model.

In earlier machine learning parlance prior to that of LLMs,
this type of process is referred to as “transfer learning”, and
indeed fine-tuning is just a specific type of transfer learning.

Fine-tuning will be the focus of the remainder of this
workshop and we will see examples applied in code.

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Fine-tuning: Approaches

Full Fine-tuning Partial Fine-tuning

Update all weights in the model.
Computationally expensive and slow
with better model performance.

Freeze most weights in the model. Update final
or newly added layers. Less computationally
demanding with model performance tradeoff.

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Example: Fine-tuning BERT for classification

INPUT OUTPUTPRE-TRAINED
BERT MODEL

C
LA

SS
IF

IE
R

HE
AD

MODEL

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

An example - BERT fine-tuned for sentiment

huggingface.co/textattack/bert-base-uncased-yelp-polarity

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/
http://huggingface.co/textattack/bert-base-uncased-yelp-polarity
http://huggingface.co/textattack/bert-base-uncased-yelp-polarity

Fine-tuning LLMs: Hands-on

Let’s apply fine-tuning to get
GPT-2 to speak like our favourite
Jedi Master

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Model Quantization
Training large language models is a very
computationally demanding task - for both storage
and compute - as the size of a model grows.

One way of addressing this issue is quantization -
working with numbers of lower precision for model
parameters and calculations, for example, storing
values as integers instead of floating points (decimal
numbers).

There are different quantization approaches as
information will always be lost. One method is affine
quantization which uses a scale factor and zero point
to map floating point values to integer ones as a
linear combination of the original values, together
with rounding and clipping.

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Parameter-Efficient Fine-Tuning (PEFT)
Parameter-Efficient Fine-tuning (PEFT) is a family of approaches which
fine-tune a small number of extra model parameters, either before or
after the LLM (additive) or by inserting smaller subsets of parameters
within certain parts of the model architecture (reparameterization).

Partial fine-tuning can be considered a type of PEFT (selective), however,
usually when one is speaking of PEFT it is in reference to one of a number
of approaches such as adapters, LoRA, QLoRA, P-Tuning, Prompt Tuning,
or Prefix Tuning that function as mentioned above.

PEFT is typically combined with model quantization, allowing the
fine-tuning of large language models efficiently and without prohibitive
infrastructure needs.

While PEFT is a topic in and of itself, we will focus in this workshop on the
commonly used LoRA approach.

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/
https://github.com/microsoft/LoRA

Introduced by researchers from Microsoft in June of 20211,
LoRA is a type of PEFT that reduces the computational cost
of fine-tuning large language models by reparameterizing
the model training.

Instead of updating all the model weights in particular parts
of the transformer architecture, only pairs of rank
decomposition weight matrices in the low rank adapter are
updated, which are typically much, much fewer than the
total weights in the model.

The approach trains a separate sets of weights which
transform the input parameters into a low-rank dimension,
and a second matrix which transforms the low-rank data to
the output dimensions of the original model.

Low-Rank Adaptation of LLMs (LoRA)

Pretrained
Weights LoRA

Input

Output

1. LoRA: Low-Rank Adaptation of Large Language Models

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685

Parameter Efficient Fine-tuning: Hands-on

Let’s revisit fine-tuning LLMs to
speak like a Jedi, only now with
the full GPT-2!

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Merging the LoRA adapter

Pretrained
Weights LoRA

Input

Output

Merged Weights

Input

Output

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Fine-tuning with LoRA and Quantization: QLoRA

Building on the work of the research of the team at
Microsoft, researchers from University of Washington
developed QLoRA: Efficient Finetuning of Quantized
LLMs in May of 2023.

QLoRA makes parameter efficient fine-tuning even more
so by using 4-bit quantization for the model to be tuned,
introducing a new data type called 4-bit NormalFloat
(NF4), as well as other optimizations.

A notable output of the QLoRA research was that of the
Guanco model family which was fine-tuned on LLaMA 2.

You can see an example of using QLoRA in Hugging Face
in this example notebook and more details in the official
blog post from Hugging Face.

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/
https://arxiv.org/pdf/2305.14314.pdf
https://arxiv.org/pdf/2305.14314.pdf
https://github.com/artidoro/qlora
https://huggingface.co/spaces/uwnlp/guanaco-playground-tgi
https://colab.research.google.com/drive/1VoYNfYDKcKRQRor98Zbf2-9VQTtGJ24k?usp=sharing
https://huggingface.co/blog/4bit-transformers-bitsandbytes

Be mindful of your data 🤔

https://rosslazer.com/posts/fine-tuning/

Fine-tuning GPT3.5-turbo based on 140k slack messages

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/
https://rosslazer.com/posts/fine-tuning/
https://rosslazer.com/posts/fine-tuning/

Where do we go from here?

Onward…

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Training your own ChatGPT
“Chatbot”-style generative text models, which take a
question or utterance from the user as input and return with
their own fully response, must be trained and worked with
differently.

At its simplest, this involves changing the format of the data
the model is trained on as being pairs of questions and
answers. For example, that LLaMA model has input an input
format for specifying system, user, and assistant (chatbot)
text with special characters denoting each part of the text.

Because of this, Hugging Face has added the chat template
functionality to make working with models like these easier.

On top of this, these models also usually have RLHF applied
to condition the format of outputs (e.g. to be complete
statements) and may also have instruction tuning applied.

<s>
[INST]
<<SYS>>

You are a helpful, respectful
and honest assistant.

<</SYS>>
There's a llama in my

garden 😱 What should I
do?

[/INST]

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/
https://huggingface.co/docs/transformers/main/en/chat_templating
https://arxiv.org/abs/2308.10792

Message Roles

SYSTEM USER ASSISTANT

Sets the behavior of
the assistant -

how it should behave
at the conversation

level (optional)

Provide requests or
input to which the

assistant will respond
(i.e. the prompts)

Responses from the
model. Can be used to
include conversation

history when it is
important (optional)

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

Training a chat LLM - data format

from transformers import
AutoModelForCausalLM, AutoTokenizer, set_seed

conversation = [
 {"role": "user", "content": "Hello, how are you?"},
 {"role": "assistant", "content": "I'm doing great.
How can I help you today?"},
 {"role": "user", "content": "I'd like to show off how
chat templating works!"},
]

tokenizer=AutoTokenizer.from_pretrained("meta-ll
ama/Llama-2-7b-hf")

tokenizer.apply_chat_template(conversation,
tokenize=False)

conversation = [

 {"role": "user", "content": "Hello, how

are you?"},

 {"role": "assistant", "content": "I'm

doing great. How can I help you today?"},

]

Tokenizer = AutoTokenizer.from_pretrained(

"microsoft/Phi-3-mini-4k-instruct")

tokenizer.apply_chat_template(conversation,

tokenize=False))

<|user|>Hello, how are
you?<|end|>

<|assistant|>
I'm doing great. How
can I help you
today?<|end|>

<|endoftext|>

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

RLHF Training

https://huggingface.co/docs/trl

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/
https://huggingface.co/docs/trl/index

Retrieval Augmented Generation
● One of the known shortcomings of LLMs is the problem of

hallucinations - a model will provide responses which sound
plausible but are "made up".

● Additionally, a desirable trait is the ability to have an LLM
answer questions about a specific dataset or corpus of
documents which was not part of its training data nor will
fit into a prompt for few-shot learning

● Retrieval Augmented Generation (RAG) addresses both these
issues by combining information retrieval (i.e. search)
against a set of documents with a generative model. This
allows the creation of responses based on the foundation
of a specific dataset while eliminating the need for
retraining or fine tuning the model itself.

Normal LLM

LLM with RAG

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

NLP, LLMs, and GenAI Consulting & Training

www.nlpfromscratch.com

Thanks for coming!

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/

