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Disclaimer

The materials presented herein are the author's own and do not 
necessarily reflect the views of Hugging Face, nor any other 
organization or individual. 

The author is solely responsible for the accuracy and completeness 
of the information presented, and any errors or omissions are 
unintentional. 

This presentation is not endorsed, affiliated with, nor sponsored 
by Hugging Face, and the author has no affiliation with this 
company.
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Manifesto

Teaching and 
learning are 
complementary.

Learning is not a 
journey, it is guided 
exploration.

The best way to 
learn is by doing.

Learning is a 
non-linear process.

Knowledge is only valuable if it is useful.

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/


Generative Text 
Models i.e. GPT
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What the Heck is an LLM?
A large language model (LLM) is a type of machine learning 
model.

More specifically, LLMs are a kind of neural network or deep 
learning model, a type of model based upon imitating the 
structure of neurons in the brain. 

The “large” in large language models refers to both the size 
of the models - most modern LLMs being composed of 
hundreds of millions, billions, or now even trillions (!) of 
parameters - as well as the data they are trained upon, 
which is typically very large bodies of text (trillions of 
words). Large language models currently represent the 
state of the art in natural language processing (NLP) 
applications and the vast majority are based upon the 
transformer architecture.

https://www.nlpfromscratch.com
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Types of Transformers (not Decepticons)

Encoder Only Encoder-DecoderDecoder Only

autoencoding models

TASKS

autoregressive models seq2seq models

● Classification
● Named entity recognition
● Extractive QA
● Masked language modeling

● Text generation
(Causal language modeling)

● Translation
● Summarization
● Generative QA

Credit: Abby Morgan

https://www.nlpfromscratch.com
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Language Modeling Tasks - Two Examples

The rain in [MASK] falls mainly in the plain.
The rain in Spain falls mainly in the plain.

The rain in Spain    ?         ?       ?    ?         ?      ?
The rain in Spain falls      ?       ?    ?         ?      ?
The rain in Spain falls gracefully ?         ?      ?
The rain in Spain falls gracefully from  ?      ?
The rain in Spain falls gracefully from the   ?
The rain in Spain falls gracefully from the sky.

Masked Language 
Modeling (MLM)

Causal Language 
Modeling (CLM)

https://www.nlpfromscratch.com
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Foundation Models

Encoder Only Encoder-DecoderDecoder Only

GPTBERT T5

● Bi-directional stacked encoders

● Trained using masked token and 

next sentence prediction

● Highly generalizable by adding 

heads for different tasks

● “Foundation of foundation”

● Google Research, October 2018

● Stacked decoders

● Generative text model

● Innovation and improved 

performance with RLHF

● Size follows Moore’s Law, 

proprietary after GPT-2

● OpenAI, June 2018

● Encoder and decoder

● Text-To-Text Transfer Transformer

● Multiple different tasks in training 

and objectives

● Text as input, text as output

● Google Research, June 2020

https://www.nlpfromscratch.com
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Use Cases for Generative Text
Code autocompletion and AI-assisted coding: Microsoft’s Github Copilot was launched in 
June 2022. Initially, more that ¼ of developers’ code files on average were generated by 
GitHub Copilot, and today with widespread adoption this is close to nearly half (~46%) and 
has been used by over 1M developers. In October 2023, Copilot surpassed $100M in 
annually recurring revenue.

Writing Assistants for creativity and copywriting: AI writing assistants have arisen for 
improved productivity and content creation for marketing, sales, creative, and numerous 
other areas. For example, Google has made this a part of their core offerings with their 
announcement of Duet AI and Canva has introduced MagicWrite based upon OpenAI’s 
offerings.

Entertainment and Social: Training generative language models on specific datasets has 
allowed to give them “personality”. Character.ai was created by developers who previously 
worked on Google’s LaMDA model, offers chatbots based upon fictional characters and 
famous individuals. It is #2 on Anderssen- Horowitz’s list of top 50 most popular GenAI web 
products (Sept 2023).

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/
https://github.com/features/copilot
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http://character.ai
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GPT - The Household name of LLMs

175B parameters

GPT-1

GPT-2

GPT-3

GPT-4

1.5B parameters

115M parameters

1.7T parameters?

Toronto Book Corpus
~800M words

WebText  (8M docs, 40GB)

CommonCrawl, Books 1+2, 
WebText, Wikipedia (~45 TB?)

https://www.nlpfromscratch.com
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Generating Text with a Model
When generating text, the model assigns probabilities to all possible tokens based on its 
understanding of the entire context. It then selects the next token in the output based on 
these probabilities. 

There are different parameters we can specify when generating text from a model to vary the 
outputs thereof.

The rain in 
Spain falls 

mainly in the…

INPUT MODEL OUTPUT

plain

meadow

fields

mountains

PROBABILITIES

plain.

https://www.nlpfromscratch.com
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Hugging Face
Hugging Face is a software company founded in 2013 and based in New 
York city. As of August 2023, the company is in Series ‘D’ funding with a 
valuation of $4.5B and backing from companies such as Salesforce, 
Google, Amazon, IBM, Nvidia, AMD, and Intel.

While this name refers to the company, it also refers to the software and 
platform they develop for working with large language models and data in 
the natural language processing and other domains.

The datasets  library allows working with data hosted on the platform, 
and the transformers  library for working with models of this type. 
There are also other libraries for working with specialized types of models 
(e.g. diffusers  for diffusion models) and data processing and model 
optimization.

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/
https://huggingface.co/
https://huggingface.co/docs/datasets/index
https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/diffusers/index
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Creating a Hugging Face account
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Generating Text in Hugging Face 🤗

The rain in 
Spain falls 

mainly in the…

INPUT MODEL

TOKENIZER

[1, 15, 22, 104, …]
[1, 0, 1, 1, 1, …]

TOKEN IDS & 
ATTENTION MASK

[22, 105, 52, …]

OUTPUT TOKEN IDS TOKENIZER

plain of the 
Canary 

Islands, but

OUTPUT

https://www.nlpfromscratch.com
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Greedy Search vs. Beam Search
● Greedy search, is the simplest decoding strategy, and chooses the token 

with the highest probability at each step. However, this may not always 

lead to the most coherent outputs since it prioritizes the most probable 

token at each step without considering the overall context.

● Beam search, on the other hand, keeps track of a fixed number (the beam 
width) of the most probable tokens at each step, and chooses the 

combination of multiple tokens with the highest overall probability over 

the beam width.

● In general, beam search tends to work well with tasks such as 

translation or summarization, where the output length is predictable, 

but less so in open-ended generation, where its results can be repetitive 

or predictable

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/


The rain in 
Spain falls 

mainly in the… plain

meadow

0.60

0.40

of

which

grasses

flowers

0.55

0.45

0.90

0.10

GREEDY SEARCH In Greedy search, the most 
probable next token is always 
selected at each point in the 
predicted sequence.

‘Plain’ is the most probable 
next token, followed by 
‘which’.

Here, for a beam width of 2, 
0.4 x 0.9 = 0.36 which is 
greater than 0.6 x 0.55 = 0.33, 
so these tokens are used. 

The probability over the beam 
width is greater, even though 
the first token, ‘meadow’, has a 
lower probability than ‘plain’.

The rain in 
Spain falls 

mainly in the… plain

meadow

0.60

0.40

of

which

grasses

flowers

0.55

0.45

0.90

0.10

BEAM SEARCH

https://www.nlpfromscratch.com
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Temperature
● When generating text, the temperature refers to determines the 

variability of the output generated by the model

● A higher temperature value leads to more diverse and varied 

outputs, whereas a lower value results in more focused and 

deterministic results

● Setting a temperature value of 0 will result in 100% deterministic 

outputs (same output for a given input)

● Setting a  temperature value higher will give the model too much 

freedom and can result in random or nonsensical outputs (gibberish)

● Lower temperatures more appropriate when performing tasks that 

have a "correct" answer (e.g. Q&A or summarization)

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/


More technically speaking
● The probability distribution of next tokens for a given 

input is modeled by the softmax function: 

where here, T represents the temperature and can be 
any number from 0 to infinity

● Therefore, as T approaches infinity, all tokens in 
vocabulary become equally likely

● “Reasonable” values for temperature will therefore 
vary by dataset model trained on and associated 
distribution of probabilities, vocabulary size, etc.

● In practice, T is never set to zero, but some very small 
number

The rain in Spain falls 
mainly in the…

plain meadow fields mountains

plain meadow fields mountains

https://www.nlpfromscratch.com
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Top-k and Top-p (Nucleus) Sampling
● Both top-k and top-p sampling are methods to 

introduce variety into text outputs and make them less 

deterministic for a given input

● In top-k sampling, instead of selecting from all possible 

tokens, only the top k most probable tokens by rank 

are considered

● In top-p, or nucleus sampling, only the most probable 

tokens whose collective probability is greater than or 

equal to a specified threshold, p, are considered

● For both methods, the total probability mass is 

redistributed amongst the new of possible tokens

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/


Top-k, k = 5 Top-p, p = 0.8

The rain in Spain falls mainly in the…

token probability cumulative rank
plain 0.5 0.5 1
meadow 0.15 0.65 2
field 0.1 0.75 3
mountains 0.05 0.8 4
afternoon 0.05 0.85 5
sunshine 0.025 0.875 6
cities 0.025 0.9 7
morning 0.05 0.95 8
evening 0.025 0.975 9
farms 0.025 1 10

token probability cumulative rank
plain 0.5 0.5 1
meadow 0.15 0.65 2
field 0.1 0.75 3
mountains 0.05 0.8 4
afternoon 0.05 0.85 5
sunshine 0.025 0.875 6
cities 0.025 0.9 7
morning 0.05 0.95 8
evening 0.025 0.975 9
farms 0.025 1 10

https://www.nlpfromscratch.com
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Finding a balance: Temperature and sampling
Low temperature, low top-p:  Consider a narrow range of high-probability 
tokens. This combination results in highly focused and predictable output.  

High temperature, low top-p: Consider a narrow range of high-probability 
tokens with near equal likelihood. The high temperature may still introduce 
some randomness in the output.  

Low temperature, high top-p: Consider a wider range of tokens but only 
select the most probable ones, resulting in less varied output.  

High temperature, high top-p:  Consider a wide range of tokens with 
increased likelihood of selecting any individual token. Can result in highly 
varied but less coherent output.  

https://www.nlpfromscratch.com
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Fine-tuning 
LLMS
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Phases of LLM Training

Pre-training Fine-tuning Reinforcement 
Learning

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/


Pre-training
The parlance of modern language models has changed 
slightly from that of traditional machine learning.

For modern LLMs, the initial phase of training of the model, 
now referred to as pre-training, consists of showing the 
model massive quantities of unlabelled text, and optimizing 
its parameters against a specific objective, such as next 
token prediction. This is the most computationally intensive 
and expensive part of training modern language models, and 
results in a pre-trained “base model”.

Because of the scale, cost, and complexity required, 
pre-training LLMs is typically only realistic for large 
organizations with considerable financial backing, 
infrastructure, and technical expertise.

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/


Reinforcement Learning from Human Feedback

A key innovation leading to significant improvement in 
quality of responses of generative text models was that 
of Reinforcement Learning from Human Feedback 
(RLHF).

Though human feedback being incorporated into RL was 
not a new idea, OpenAI was the first to apply this at scale 
in training InstructGPT — the predecessor to ChatGPT 
— using Proximal Policy Optimization (PPO).

A pretrained model is tuned on a collection of 
human-generated responses to prompts (1), and a 
reward model is also trained, incorporating human 
feedback: a ranking of a selection of responses 
generated by the model (2). These are then incorporated 
together into iteratively training a final policy model 
through reinforcement learning (3).

1

2

3

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/
https://openai.com/research/instruction-following
https://arxiv.org/abs/1707.06347


Fine-tuning
On the other hand, fine-tuning is less computationally 
intensive and requires much less data. 

In this part of the training process, a pre-trained model is 
shown a smaller dataset and further optimized against 
another target objective. This objective can be the same as 
that of the original base model, or a different objective if a 
different type of “head” is added to the base model.

In earlier machine learning parlance prior to that of LLMs, 
this type of process is referred to as “transfer learning”, and 
indeed fine-tuning is just a specific type of transfer learning.

Fine-tuning will be the focus of the remainder of this 
workshop and we will see examples applied in code.

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/


Fine-tuning: Approaches

Full Fine-tuning Partial Fine-tuning

Update all weights in the model. 
Computationally expensive and slow 
with better model performance. 

Freeze most weights in the model. Update final 
or newly added layers. Less computationally 
demanding with model performance tradeoff.

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/


Example: Fine-tuning BERT for classification

INPUT OUTPUTPRE-TRAINED 
BERT MODEL

C
LA

SS
IF

IE
R 

HE
AD

MODEL
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An example - BERT fine-tuned for sentiment

huggingface.co/textattack/bert-base-uncased-yelp-polarity

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/
http://huggingface.co/textattack/bert-base-uncased-yelp-polarity
http://huggingface.co/textattack/bert-base-uncased-yelp-polarity


Fine-tuning LLMs: Hands-on

Let’s apply fine-tuning to get 
GPT-2 to speak like our favourite 
Jedi Master

https://www.nlpfromscratch.com
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Model Quantization
Training large language models is a very 
computationally demanding task - for both storage 
and compute - as the size of a model grows.

One way of addressing this issue is quantization - 
working with numbers of lower precision for model 
parameters and calculations, for example, storing 
values as integers instead of floating points (decimal 
numbers).

There are different quantization approaches as 
information will always be lost. One method is affine 
quantization which uses a scale factor and zero point 
to map floating point values to integer ones as a 
linear combination of the original values, together 
with rounding and clipping. 

https://www.nlpfromscratch.com
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Parameter-Efficient Fine-Tuning (PEFT)
Parameter-Efficient Fine-tuning (PEFT) is a family of approaches which 
fine-tune a small number of extra model parameters, either before or 
after the LLM (additive) or by inserting smaller subsets of parameters 
within certain parts of the model architecture (reparameterization).

Partial fine-tuning can be considered a type of PEFT (selective), however, 
usually when one is speaking of PEFT it is in reference to one of a number 
of approaches such as adapters, LoRA, QLoRA, P-Tuning, Prompt Tuning, 
or Prefix Tuning that function as mentioned above.

PEFT is typically combined with model quantization, allowing the 
fine-tuning of large language models efficiently and without prohibitive 
infrastructure needs.

While PEFT is a topic in and of itself, we will focus in this workshop on the 
commonly used LoRA approach.

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/
https://github.com/microsoft/LoRA


Introduced by researchers from Microsoft in June of  20211, 
LoRA is a type of PEFT that reduces the computational cost 
of fine-tuning large language models by reparameterizing 
the model training.

Instead of updating all the model weights in particular parts 
of the transformer architecture, only pairs of rank 
decomposition weight matrices in the low rank adapter are 
updated, which are typically much, much fewer than the 
total weights in the model.

The approach trains a separate sets of weights which 
transform the input parameters into a low-rank dimension, 
and a second matrix which transforms the low-rank data to 
the output dimensions of the original model.

 

Low-Rank Adaptation of LLMs (LoRA)

Pretrained 
Weights LoRA

Input

Output

1. LoRA: Low-Rank Adaptation of Large Language Models

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685


Parameter Efficient Fine-tuning: Hands-on

Let’s revisit fine-tuning LLMs to 
speak like a Jedi, only now with 
the full GPT-2!

https://www.nlpfromscratch.com
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Merging the LoRA adapter

Pretrained 
Weights LoRA

Input

Output

Merged Weights

Input

Output

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/


Fine-tuning with LoRA and Quantization: QLoRA

Building on the work of the research of the team at 
Microsoft, researchers from University of Washington 
developed QLoRA: Efficient Finetuning of Quantized 
LLMs in May of 2023.

QLoRA makes parameter efficient fine-tuning even more 
so by using 4-bit quantization for the model to be tuned, 
introducing a new data type called 4-bit NormalFloat 
(NF4), as well as other optimizations.

A notable output of the QLoRA research was that of the 
Guanco model family which was fine-tuned on LLaMA 2. 

You can see an example of using QLoRA in Hugging Face 
in this example notebook and more details in the official 
blog post from Hugging Face.

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/
https://arxiv.org/pdf/2305.14314.pdf
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Be mindful of your data 🤔

https://rosslazer.com/posts/fine-tuning/

Fine-tuning GPT3.5-turbo based on 140k slack messages

https://www.nlpfromscratch.com
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Where do we go from here?

Onward…

https://www.nlpfromscratch.com
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Training your own ChatGPT
“Chatbot”-style generative text models, which take a 
question or utterance from the user as input and return with 
their own fully response, must be trained and worked with 
differently.

At its simplest, this involves changing the format of the data 
the model is trained on as being pairs of questions and 
answers. For example, that LLaMA model has input an input 
format for specifying system, user, and assistant (chatbot) 
text with special characters denoting each part of the text.

Because of this, Hugging Face has added the chat template 
functionality to make working with models like these easier.

On top of this, these models also usually have RLHF applied 
to condition the format of outputs (e.g. to be complete 
statements) and may also have instruction tuning applied.

<s>
[INST] 
<<SYS>>

You are a helpful, respectful 
and honest assistant. 

<</SYS>>
There's a llama in my 

garden 😱 What should I 
do? 

[/INST]

https://www.nlpfromscratch.com
https://www.torontomachinelearning.com/
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Message Roles

SYSTEM USER ASSISTANT

Sets the behavior of 
the assistant -

how it should behave 
at the conversation 

level (optional)

Provide requests or 
input to which the 

assistant will respond 
(i.e. the prompts)

Responses from the 
model. Can be used to 
include conversation 

history when it is 
important (optional)

https://www.nlpfromscratch.com
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Training a chat LLM - data format

from transformers import 
AutoModelForCausalLM, AutoTokenizer, set_seed

conversation = [
  {"role": "user", "content": "Hello, how are you?"},
  {"role": "assistant", "content": "I'm doing great. 
How can I help you today?"},
  {"role": "user", "content": "I'd like to show off how 
chat templating works!"},
]

tokenizer=AutoTokenizer.from_pretrained("meta-ll
ama/Llama-2-7b-hf")

tokenizer.apply_chat_template(conversation, 
tokenize=False)

conversation = [

  {"role": "user", "content": "Hello, how 

are you?"},

  {"role": "assistant", "content": "I'm 

doing great. How can I help you today?"},

]

Tokenizer = AutoTokenizer.from_pretrained(

"microsoft/Phi-3-mini-4k-instruct")

tokenizer.apply_chat_template(conversation, 

tokenize=False))

<|user|>Hello, how are 
you?<|end|>

<|assistant|>
I'm doing great. How 
can I help you 
today?<|end|>

<|endoftext|>

https://www.nlpfromscratch.com
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RLHF Training

https://huggingface.co/docs/trl

https://www.nlpfromscratch.com
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Retrieval Augmented Generation
● One of the known shortcomings of LLMs is the problem of 

hallucinations - a model will provide responses which sound 
plausible but are "made up".

● Additionally, a desirable trait is the ability to have an LLM 
answer questions about a specific dataset or corpus of 
documents which was not part of its training data nor will 
fit into a prompt for few-shot learning

● Retrieval Augmented Generation (RAG) addresses both these 
issues by combining information retrieval (i.e. search) 
against a set of documents with a generative model. This 
allows the creation of responses based on the foundation 
of a specific dataset while eliminating the need for 
retraining or fine tuning the model itself.

Normal LLM

LLM with RAG

https://www.nlpfromscratch.com
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NLP, LLMs, and GenAI Consulting & Training

www.nlpfromscratch.com

Thanks for coming!
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